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During the past few decades, nickel- and palladium-catalyzed
cross-couplings of aryl and vinyl halides/sulfonates have been devel-
oped into very powerful tools for carbon-carbon bond formation.1

The first indications that such couplings might also be viable for
â-hydrogen-containing, unactivatedalkyl halides/sulfonates2 were
provided by the pioneering work of Suzuki in 19923,4 and a series
of investigations by Knochel beginning in 1995,5,6 which focused
on reactions with boron and zinc reagents, respectively. Within the
past two years, the pace of progress in the development of methods
for cross-coupling alkyl electrophiles has accelerated significantly
with reports of reactions with magnesium,7 tin,8 silicon,9 and
zirconium10 reagents.11 However, these studies only describe
couplings ofprimary alkyl halides/sulfonates.

Clearly, to fully exploit the exciting potential of alkyl electro-
philes as partners in nickel- or palladium-catalyzed cross-couplings,
it is imperative that methods be available to couple more hindered
substrates. In 2003, we disclosed the first examples of cross-
couplings of unactivatedsecondaryalkyl electrophiles, specifically,
Negishi reactions of bromides and iodides.12 More recently, we have
turned our attention to Suzuki reactions. Among cross-coupling
processes, Suzuki reactions are particularly widely used, due to
attractive attributes such as the commercial availability, the air and
water stability, and the nontoxic nature of boronic acids.13 In this
communication, we report the first method for achieving Suzuki
cross-couplings of unactivated secondary alkyl halides (eq 1).

During our catalyst-development effort, we focused our attention
on coupling cyclohexyl bromide with phenylboronic acid. After
exploring a wide array of conditions, we determined that 4%
Ni(cod)2/8% bathophenanthroline/1.6 equiv KOt-Bu in s-BuOH at
60 °C furnishes an excellent yield (91%) of the desired Suzuki
cross-coupling product (Table 1, entry 1).

The data in Table 1 illustrate the impact of various parameters
on the efficiency of this process. Although Ni(acac)2 displays
some activity (entry 2), other nickel and palladium complexes
afford essentially no carbon-carbon bond formation (entries 3-4).
s-Bu-Pybox, which is useful for Negishi reactions of secondary
alkyl halides,12 is ineffective under these conditions (entry 5), as
are an array of phosphine and carbene ligands (e.g., entries 6-7).
Phenanthroline itself (entry 8)sbut not a more hindered derivative
(entry 9)sis a moderately efficient ligand, as are bipyridines (entries
10-11). A decrease in the bathophenanthroline:Ni ratio leads to a
decrease in yield (entry 12), and no phenylcyclohexane is observed
if bathophenanthroline is omitted (entry 13). Use of KOEt, rather
than KOt-Bu, results in slightly less effective coupling (entry 14).
To achieve a reasonable reaction rate, heating is required (entry

15). Finally, use of a lower catalyst loading leads to a modestly
lower yield (entry 16).14

Our optimized procedure can be applied directly to Suzuki cross-
couplings of a range of secondary alkyl bromides (Table 2).15 Both
electron-rich (entries 3-4) and electron-poor (entries 5-6) aryl-
boronic acids can be coupled, along with certain heteroarylboronic
acids (entries 7-8). Interestingly, for the substrates illustrated in
entry 9, the reaction occurs selectively at the secondary Csp3-Br,
rather than the Ar-Cl, bond.

The method that we have developed for cross-coupling alkyl
bromides can also be employed for Suzuki reactions of alkyl iodides
(Table 3).16 Thus, without re-optimizing the conditions, we have
determined that 4% Ni(cod)2/8% bathophenanthroline catalyzes
couplings of secondary (entries 1-2) and primary (entries 3-4)
alkyl iodides with aryl- and alkenylboronic acids in satisfactory
yield.

In conclusion, we have developed a catalyst system that achieves
the first Suzuki reactions of unactivated secondary alkyl bromides
and iodides. The ability to couple readily available, easy-to-handle
boronic acids is an attractive feature of this process. We anticipate

Table 1. Impact of Reaction Parameters on the Efficiency of a
Suzuki Cross-Coupling of a Secondary Alkyl Bromide
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that the capacity to employ alkyl electrophiles as coupling partners
will markedly increase the already exceptional utility of cross-
coupling reactions, and our current efforts are therefore focused
on developing highly versatile catalysts for a range of processes.
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Table 2. Suzuki Cross-Couplings of Unactivated Secondary Alkyl
Bromides (eq 1)

Table 3. Suzuki Cross-Couplings of Unactivated Alkyl Iodides
(eq 1)
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